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A B S T R A C T   

Visual damage inspection of steel frames by eyes alone is time-consuming and cumbersome; therefore, it pro
duces inconsistent results. Existing computer vision-based methods for inspecting civil structures using deep 
learning algorithms have not reached full maturity in exactly locating the damage. This paper presents a deep 
convolutional neural network-based damage locating (DCNN-DL) method that classifies the steel frame images 
provided as inputs as damaged and undamaged. DenseNet, a DCNN architecture, was trained to classify the 
damage. The DenseNet output was upscaled and superimposed on the original image to locate the damaged part 
of the steel frame. The DCNN-DL method was validated using 144 training and 114 validation sets of steel frame 
images. DenseNet, with an accuracy of 99.3%, outperformed MobileNet and ResNet with accuracies of 96.2% 
and 95.4%, respectively. This case study confirms that the DCNN-DL method effectively facilitates the real-time 
inspection and location of steel frame damage.   

1. Introduction 

Many civil structures (such as bridges, buildings, dams, and high
ways) in use today were built decades ago. These structures eventually 
approach the end of their service life and undergo aging and deterio
ration. The American Society of Civil Engineers claims that approxi
mately 56,000 bridges require rehabilitation owing to their structural 
deficiencies in USA [1]. The periodic monitoring of critical structures 
plays a vital role in ensuring safety. Structural health monitoring (SHM) 
is the process of implementing strategies and systems for structural 
damage detection [2]. SHM safeguards the operational safety of civil 
structures through various types of sensor deployment, periodic struc
tural inspection, assessment, and maintenance [3] and includes the 
periodic continuous monitoring of structural parameters and analysis of 
data to determine the health, performance, and integrity of the structure 
[4]. SHM provides critical information to increase the safety of civil 
structures and infrastructures, thereby supporting informed mainte
nance decisions and actions [5]. 

Steel frames are used to construct civil structures with various forms 
of structural members and are either blended with steel or made entirely 
of steel [6]. Assuring the quality of streel frames is closely associated 
with ensuring the safety and longevity of structures. Steel surface defects 
that may be attributed to various factors, such as external strain, cli
matic changes, and chemical reactions, degrade the appearance, per
formance, and durability of steel [7]. Steel products are available in 
various forms, among which slabs, plates, and hot/cold strips are uni
formly surfaced steel products, and rods/bards, angles, and channels are 
heavy structural surfaces. Various types of surface defects may occur in 
these products. However, no standards have been established to classify 
these defects [8]. The continuous external load applied to the steel 
member causes fatigue and leads to structural damage. Continuous 
external or cyclic loads applied on a steel member cause fatigue or 
cracks, which eventually results in structural damage, devastating 
events, and loss of lives and property [9,10]. 

Existing studies related to steel surface inspections are mainly 
confined to either the industry associated with manufacturing steel 
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members or academia. Stress spectra are generally obtained through 
theoretical stress analyses based on structural and traffic-loading 
models. However, fatigue life has been predicted inaccurately owing 
to errors in both structural and loading modeling [11]. Advances in 
sensing, computing, data acquisition, and communication have pro
moted the development of SHM technology in steel bridges. However, 
limitations in deploying sensors, specifically for in-situ conditions in 
places where fatigue cracks are expected, hinder safety and pose diffi
culties in monitoring these structures [12]. Various manual inspection 
methods that are labor-intensive, time-consuming, and cumbersome are 
employed to assess the conformity of building plumbing systems and 
steel-blended (or enabled) structural components [13]. When a repeti
tive linear mega project (for example, high-rise buildings) is underway, 
these methods are particularly error-prone because of the tedious data 
collection, processing, and reporting tasks. Indeed, the repetition of 
production units exacerbates error probability, thereby causing a mis
handling of the nonconformity (i.e., defects or deformations) [14]. 

The manual detection of structural damage remains a challenging 
and time-consuming process. Various SHM technologies have been 
proposed to evaluate the integrity of structures [15–17]. A sensor-based 
SHM is capable of monitoring structural and temperature-, humidity-, 
and wind-induced deformations [18]. Non-destructive technologies that 
use ultrasonic waves and acoustic emission techniques have been 
applied for damage detection [19–21]. Several SHMs have been utilized 
to identify damage that occur on the surfaces of large-scale steel struc
tures. Sensor-based technologies depend on implementing numerous 
sensors and involve complex data processing mechanisms [22,23]. 
Therefore, it is necessary to develop an efficient method to process data 
collected from multiple sources. Machine learning (ML) models enable 
learning from data and are capable of predicting structural damage from 
the learned knowledge [24]. A support vector machine (SVM)-based 
kernel function has been used for structural damage detection [25]. In 
addition, artificial neural networks (ANNs) have been widely applied for 
damage detection in trusses, steel frames, and steel bridges [26–28]. 
Detecting damage from structural images using ML models involves 
complex feature engineering tasks, as it depends on a large number of 
features [29,30]. 

Computer vision techniques have been developed to address these 
challenges. Mobile manipulator imaging systems [31], hybrid image 
segmentation methods [32,33], and edge detection methods [34,35] are 
popular techniques for damage detection. Computer vision technologies 
have been used to identify spatiotemporal vehicle load distribution 
patterns in long-span steel structures [36]. For example, the image 
enhancement technique combined with the principal component anal
ysis (PCA) algorithm has been used to identify damage in cable-stayed 
steel structures [37]. However, computer vision techniques have not 
reached full maturity in identifying damage in small-scale steel struc
tures, as utilizing sensors to identify damage on such structures remains 
a challenge. This study fills this research gap by developing a novel 
computer vision model to identify damage to small-scale steel 
structures. 

2. Current state of damage detection methods based on 
computer vision 

2.1. Literature review 

Developments in optics and computer vision have enabled structural 
inspections over long noncontact distances based on high-precision 
structural monitoring [38]. Computer vision integrated with deep 
learning (DL), which detects nonconformity, has enhanced the auto
mation of quality checking and has attracted intensive attention owing 
to the increasing demand for surface quality assurance [39]. Detection 
methods may include stress/strain monitoring, structural displacement 
measurement, crack or damage inspection, and classification [40]. The 
horizontal and vertical displacements of structural components have 

been identified based on various image processing algorithms (such as 
CamShift tracking [41], mean-shift tracking [42], digital image corre
lation [43], and the Lucas–Kanade method [44]). 

Unshaped or deformed object detection and classification is one of 
the most difficult tasks in computer vision and pattern recognition [45]. 
The detection of nonconformities on steel surfaces is a type of unshaped 
object detection problem because a region with defects cannot be pre
defined. Various methods for detecting and classifying steel frame sur
face defects have been proposed [46]. They include image processing 
techniques (or algorithms) that identify surface defects based on their 
morphology and features (i.e., color, texture, and shape) by investi
gating the outer surfaces of steel structures [47], classifying the 
deformed and nondeformed surfaces using texture descriptors obtained 
based on a gray-level co-occurrence matrix [48], and classifying the 
defects by hybridizing image processing algorithms and self- 
organization maps [45]. In addition, neural networks are used to clas
sify steel structures and identify the deformation of steel structures [46]. 
Genetic algorithms, multivariate discriminant functions, and support 
vector machines are conventional methods that detect and classify 
whether the defects or deformations on steel frame surfaces undergo a 
multiparadigm shift that hybridizes computational intelligence (i.e., 
genetic algorithms, multivariate discriminant function, support vector 
machines, ANNs, Gabor filters, entropy filters, and deep neural net
works) with computer vision [49–58]. 

Conventional computer vision techniques have been augmented 
through integrations with deep neural networks to detect deformations 
and defects [59]. Accordingly, several DCNN architectures (such as 
AlexNet [60], VGG16 [61], and Resnet50 [62]) have been trained using 
a large image dataset [63]. These architectures achieve an acceptable 
accuracy for general image classification because the performance of the 
existing DCNN model depends on the quality and quantity of the input 
data used for training [64]. However, not all DCNN architectures 
effectively perform tasks pertaining to the handling of real-world cases 
in the domain of computer vision. Insufficient image data is a major 
issue in identifying nonconformities (i.e., damage, defect, or deforma
tion) in steel frames [65]. Given insufficient data, a DCNN model that 
classifies nonconformities encounters a vanishing gradient or over
fitting. Therefore, it would be beneficial to choose the best DCNN ar
chitecture operable with a minimum number of parameters and 
optimum trade-offs [66]. Existing studies investigated the competence 
of the DCNN architecture by training models using a small amount of 
data; this is a significant drawback of existing studies. In addition, the 
model may be trained on irrelevant features of an image, rather than on 
targeted features. This inappropriate processing adds more challenges to 
classifying a nonconformity (or damage) on the surface of steel frames. 
Indeed, data augmentation methods may facilitate the development of 
an image classification model that achieves the objective using a mini
mum amount of data [56]. 

Existing DCNN studies propose damage detection methods based on 
bounding boxes and semantic segmentation [67]. Damage to steel 
members causes shape deformation and/or changes in dimensions. 
Because the image of the shape-deformed spot can be captured from 
various angles and distances, identical shape deformations may have 
different appearances in the images obtained [68]. The bounding box 
method can localize the deformation and damage to steel frames. 
However, it cannot exactly locate damaged spots. The enhanced per
formance of DCNNs encourages researchers to utilize the DCNN archi
tecture to conduct semantic segmentation [69]. This facilitates the 
implementation of fully convolutional networks (FCNs) for semantic 
segmentation. The FCN that was used to detect roads in self-driving 
vehicles and aerial imagery was used to detect the damage to concrete 
structures based on semantic segmentation [70–72]. The semantic seg
mentation method outperformed the mapping of coarse and fine in
terferences. However, it cannot appropriately detect the deformation of 
structural members. 

In the literature, DL models are configured for various computer 

B. Kim et al.                                                                                                                                                                                                                                     



Automation in Construction 132 (2021) 103941

3

vision-based applications [73]. Among these, convolutional neural 
network-(CNN) based models have been used as a standard in computer 
vision for decades. Over the course of development, CNN model archi
tectures have acquired increasingly more hidden layers and large 
parameter sets, thus providing incredibly accurate models [74,75]. 
Along with this development, there arises a data bias issue in which the 
model might learn the complexity in the training images, resulting in 
overfitting. The greater the presence of functions in the CNN, the greater 
the chances of overfitting [76–78]. Residual blocks, batch normaliza
tion, and skip connections have been proposed to address the issue and 
retain deep CNN architectures. Residual blocks are effective in handling 

overfitting issues. However, adding skip-level connections and batch 
normalization may further increase the complexity of the architecture. 

Steel bar damage detection involves training the model on adversa
rial images. However, configuring a robust model for these images is 
difficult [79]. The competence of DL models is heavily reliant on the 
data with which the model is trained. Hence, the quality of data used for 
building the DL model plays a crucial role in determining its efficiency. 
It is challenging to build a distinct dataset of small-scale steel structures 
by considering all essential parameters. It is noteworthy that DL models 
can apply the advantages of data augmentation techniques to increase 
the diversity of the training data [80]. In addition, DL algorithms are 
black boxes and have low interpretability. The black box nature restricts 
the visualization of the activated perceptron of the deployed DL algo
rithm [81]. However, gradient-weighted class activation mapping 
(Grad-CAM) visualization techniques may be employed to visualize the 
activated perceptron to detect the exact damaged location on the steel 
frames. 

Compared with various pretrained DCNN models, the DenseNet, 
ResNet, and MobileNet architectures are accepted as the most robust 
because of their distinctive architectural features [69,70]. DenseNet is 
outstanding for building an image classification model when the amount 
of image data is limited [71,81]. The number of parameters to be trained 
by DenseNet is smaller than that of the other pretrained DCNN models 
[82,83]. DenseNet enables innovation to avoid pitfalls, such as vanish
ing gradients and overfitting [84]. Grad-CAM has been used to overcome 
the limitations of damage detection methods based on bounding boxes 
and semantic segmentation [85]. Grad-CAM can make a particular de
cision of interest by using the gradient feature vector that is input into 
the last convolutional layer of the DCNN. Two distinct images can be 
classified based on the Grad-CAM visualization [86]. In addition, Grad- 
CAM visualization does not require a modification to the existing CNN 
architecture, unlike other object detection models. An object detection 
model usually requires the localization and annotation of each object to 
command an additional task. Grad-CAM is a class activation map in 
which visualization is based on the gradients generated during back 
propagation. Grad-CAM is the best technique for understanding the 
intuition of the developed model during the training process. It can also 
be used as a class activation map for object detection models without 
modifying the layer stack of the core architecture. 

2.2. Research method 

The flow of the proposed research method is illustrated in Fig. 1. The 
entire workflow is organized into five steps, and each step operates on a 
set of criteria. 

First, the performances of the existing damage detection methods 
were investigated through a literature survey to identify the major 
limitations of these methods and, therefore, to recapitulate their 
distinctive research contributions. Second, a novel DCNN model was 
developed to identify damage on steel frames. A benchmark dataset 
consisting of a collection of steel frame images was developed by taking 
different parameters into consideration. The diversity of the dataset was 
further enhanced by applying the data augmentation techniques. The 
proposed DCNN model was trained and tested over the augmented 
dataset. 

Third, the novel method was evaluated using a dataset, to compare 
operations with other existing DL models for image classification. The 
best performing image classification models in the literature, namely 
ResNet and MobileNet, were implemented with the steel frame dataset 
to identify the damage. The performances of the models were compared 
with that of the proposed DCNN architecture. Fourth, the learning rates 
of the DL models were measured during the model training and testing 
phases. The performance of the model was validated by analyzing 
additional performance metrics, namely accuracy, and Cohen’s Kappa 
and area under the receiver operating characteristics (AUROC) scores. 
Further, the Grad-CAM visualization method was applied to visualize 

Fig. 1. Research method.  
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the exact location of damage on the surface of the steel frame. The 
validity and effectiveness of the proposed method were verified by 
performing a series of case studies, along with the results and discussions 
of the novel method. Finally, the research contributions, limitations, and 
conclusions were presented. 

3. Hybridization of the DCNN method with an image 
augmentation technique 

The method used to classify the damage on steel members is dis
cussed in this section, along with the system database that serves to 
build the DL model and the process of data augmentation. 

3.1. Computational processes 

CNNs, which are deep neural networks comprising a multilayer 
network wherein the neurons in each layer are connected to the neurons 
in the next layer, are widely used for analyzing visual imagery and 
solving image classification problems. The proposed method was 
implemented to identify damaged steel frames. It classifies the steel 
frame image into either nonconformity (or damaged) or conformity (or 
undamaged) based on CNNs trained using a supervised learning 
approach [32]. Various deep CNN models that were trained using the 

training dataset (i.e., undamaged and damaged steel frame images) were 
employed for the experiment. A DenseNet-based DCNN model was 
implemented to classify the damage to the steel frame. A diversified steel 
frame dataset was populated by varying experimental parameters. An 
image data augmentation technique that can increase the magnitude of 
the dataset was implemented. The model was trained using a data 
augmentation technique to obtain a more efficient steel frame damage 
classification. The performance of the model was validated by 
comparing it with that of existing pretrained models (i.e., MobileNet and 
ResNet). In addition, the exact damage location was visualized using the 
Grad-CAM approach. 

The steel frame data were divided into training and testing datasets, 
as shown in Fig. 2. The images in the training set were used to build the 
DL model, which was validated and fine-tuned to enhance its accuracy in 
each iteration of the model building. The DL model was then validated 
by analyzing its performance using the available testing data. There
after, the performances of the trained DL models that were developed 
using different deep CNN architectures, relative to the various evalua
tion metrics, were confirmed using an exclusive testing dataset. 

The DL model validated for classifying the real-time damage in
spection of steel structures captures the area to be inspected, inputs the 
captured image data into the DCNN, and analyzes and classifies the 
image data into damaged and undamaged steel frames, as shown in 

Fig. 2. Deep learning model building architecture.  

Fig. 3. Steel frame assessment.  

B. Kim et al.                                                                                                                                                                                                                                     



Automation in Construction 132 (2021) 103941

5

Fig. 3 (a), (b), and (c). 

3.2. Populating the steel frame image dataset 

Dataset collection for computer-vision modeling is an extremely 
delicate task that dictates the scope of the research project. In this study, 
data attributes were carefully selected to achieve usable and valid model 
training. The computer vision-based model, which classified the damage 
on steel frames, used various attributes associated with image data. 
These attributes (or parameters) included the dimensions of the steel 
frame cross-section, height of the camera placement, distance between 
the steel frame and camera, and measurement angle. The images were 
captured using a higher dimensional camera to produce high-resolution 
images, which were then cropped and labeled separately. The steel 
frame images captured with different angles, lighting, and textures 
formed a large dataset based on permutations of these conditions. This 
dataset provided high-quality images for training the CNN model. The 
data collection process increased the chances of generating a greater 
number of distinct images for model training by data augmentation. The 
generated dataset augmented the robustness of the model and provided 
a better deployment accuracy. A proprietary dataset of steel frame im
ages was obtained by considering these parameters for a simulated job 
site. A series of controlled experiments were performed by manipulating 
these parameters, as shown in Table 1, while maintaining the laboratory 
setup arrangement shown in Fig. 4. 

Samples of damaged and undamaged steel bars of different sizes (S) 
were collected to build a steel bar data repository, and images were 
collected from the selected samples by considering the parameters. A 
digital camera was used to capture a total of 720 images of 2304 × 1728 
resolution that equally contributed to two classes: damaged and un
damaged. The dataset contained images obtained based on all the per
mutations of the manipulated parameters (i.e., the height of camera 
placement (H), dimensions of the steel frame (S), distances between the 
steel frame and camera (D), and measurement angles (θ)) by manipu
lating one of the parameters. The collected images were stored in an 
operational data repository for classification tasks. The sample images of 
the damaged and undamaged steel frames presented in Figs. 5 and 6, 
respectively, were randomly mixed and stored in the repository. 

The DL model was constructed in two phases: model training and 
testing. The model was trained on the available steel frame dataset for 
damage classification. During testing, the trained model was validated 
using the performance metrics. Each training and testing phase used 
separate exclusive image datasets. In addition, another validation 
dataset was used to verify whether the model overfitted the training 
dataset during the model training phase. The image labels of the 
damaged and undamaged steel frames were partitioned into training, 
validation, and testing datasets, which had 462, 144, and 144 images, 
respectively. Both the testing and validation datasets were exclusively 
stored for evaluation during training and hyperparameter-tuning. 

3.3. Augmenting the image data 

It is important to provide image data in an algorithm-understandable 
format because the performance of the DL model is closely related to the 
quantity and quality of the supplied data. Building an effective DL model 
by supplying quality data may contribute to reducing the validation and 
training errors. Reducing these errors may lead the model under study to 
be generalized, thereby widening its applicability and usability. Several 

Table 1 
Manipulated parameters for populating the dataset.  

Parameters Values 

Dimension of steel frame (S) 50 × 50 mm and 75 × 75 mm 
Height of camera placement (H) 50 cm, 75 cm, 100 cm 
Distance between steel frame and camera 

(D) 
5 cm, 10 cm, 20 cm, 30 cm, 40 cm, 50 
cm 

Measurement angle (θ) 0◦, 10◦ , 20◦ , 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 
90◦

Image dimension (I) 2304 × 1728  

Fig. 4. Data collection arrangement: (a) Camera position; (b) Angle of measurement.  

Fig. 5. Damaged steel frame images.  

Fig. 6. Undamaged steel frame images.  
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regularization methods are employed to prevent a model from over
fitting the training data. Specifically, data augmentation complements 
the overfitting issue. 

To overcome the limitations involved in collecting a more diverse 
dataset, image augmentation was performed to synthesize a larger 
sample set, as using diversified images may increase the robustness of 
the trained model. The factors affecting the quality of an image (such as 
distortion, blur, and over or under exposure) were anticipated in the 
edge devices where the model was employed. Image augmentation was 
implemented on the training dataset to ensure that the model performed 
well by learning relevant and significant features from the images. 
Image augmentation synthesizes more image samples in the training set 
by manipulating the original image samples through random image ef
fects. The augmented training set included both the original sample and 
synthesized images. Data augmentation reduces the uniformity in the 
dataset and optimizes the model based on the actual characteristics of 
the object. This may decrease the model’s chances of bias to the dataset 
source. The data augmentation of images facilitates the acquisition of 
competent models, even when a limited amount of data is provided for 
training and evaluation purposes. The augmented data represent a more 
comprehensive set than the data points obtained; therefore, the distance 
between the training and validation sets, as well as that between either 
of these sets and additional testing sets obtainable in the future, are 
minimized [56]. 

Data augmentation was implemented by referring to existing studies 
(i.e., classifying handwritten digits based on LeNet-5 [57], increasing 
the dataset size by 2048 in the ImageNet dataset for AlexNet CNN [3], 
and reducing the error rate of the DL model by solving the overfitting 
issue [4]). It was performed by cropping 224 × 224 image patches from 
the original image and flipping them horizontally and vertically in a 
random fashion, tilting them to a maximum angle of up to 45◦, adding 
Gaussian noise to them, and manipulating their attributes (i.e., bright
ness, contrast, and hue). After increasing the magnitude of the training 
dataset four-fold, as shown in Fig. 7, the DL model was trained using the 
augmented set of steel frames. 

3.4. Pretraining deep CNN models 

CNN architectures typically have multiple convolutional layers for 
extracting features from input images. Fully connected neural networks 
are used to classify the input images using feature vectors. The initial 
CNN models, such as LeNet-5 [2], had five convolution layers. Subse
quently, CNN architectures incorporated a deeper and larger number of 
convolutional layers that could effectively learn the spatial character
istics of an image. Owing to the advancement in innovative methods and 
architectures, image classification has become more sophisticated and 
accurate. It is well accepted that DCNN models are often overfitted to the 
training dataset, resulting in a higher validation loss, and advanced deep 
architectures are enabled with more functionalities, such as batch 
normalization, regularization, dropout, and residual connections, 
resulting in more generalized DCNN models. 

3.4.1. Pretrained deep CNN models for rebar image classification 
Three DCNN models (DenseNet, ResNet, and MobileNet) were 

trained to evaluate their performances in rebar damage classification in 
this study. Recent technical advancements have made DCNNs efficient 
in image classification and segmentation tasks [57]. The overall per
formance of a DNN depends on the depth and width of the network 
architecture. However, the deeper and wider the networks, the poorer 
the convergence, overfitting, and gradient disappearance performances 
of such comprehensive architectures. Intensive optimizations of hyper
parameters and layer arrangements have been performed to address 
these issues [58]. 

ResNet outperforms other deep CNN models (i.e., VGG16 and Alex
Net) because it learns more complex objects and classifies them effi
ciently. It is built with residual blocks that are effective at learning an 
identity function; thus, they can learn identity functions without 
suffering from vanishing gradients. The ResNet architecture imple
mented in the proposed model had 50 deep layers to provide a good 
balance of simplicity and ability. It was relatively less deep compared 
with the other models and was sufficiently capable of fitting the irreg
ularities among images. MobileNet, which is a spatial CNN, makes a 
model comparatively shallow and learns efficiently from the input 
image. It uses depth-wise convolution in its neural architecture, thus 
making it efficient in learning the spatial features of images across 
channels. Because it has a smaller neural network layer depth, it reduces 
training parameter sets, resulting in a smaller model size, and achieves 
computational economies compared to other deep CNN models. Den
seNet is a deeply connected neural layer architecture in which the layers 
are deeply connected with its previous layers and adopt skip connections 
from residual blocks. During backpropagation, the parameters of the 
neural network that are closer are often not tuned, thereby affecting 
model learning. However, deeply interconnected neural networks 
generate gradients that enable the DenseNet model to learn more 
effectively, and it is considerably smaller and more efficient in compu
tations than ResNet and MobileNet. Considering these advantages, 
DenseNet, ResNet, and MobileNet models were selected to develop a 
steel frame damage detection model. 

DenseNet contains a transition layer between two consecutive dense 
blocks. The transition layer reduces the number of input feature maps by 
using a 1 × 1 convolution kernel and halves the number of input feature 
maps by using a 2 × 2 average pooling layer. These two operations can 
reduce the computational load on the network [59]. ResNet consists of 
152-layer-deep residual nets that address the issue of learning complex 
functions and vanishing gradients. With ResNet, the gradients can flow 
directly through the skip connections backward from the latter layers to 
the initial filters. Moreover, each layer follows the same pattern. 
MobileNet is a network model that uses depth-wise separable convolu
tion as its core. The depth-wise convolution and point convolution layers 
are considered as two separate convolution layers in MobileNet. The 
input feature maps of each depth-wise convolution layer in the dense 
block are the superposition of the output feature maps in the previous 
convolution layer [60]. 

The DenseNet architecture shown in Fig. 8 was implemented to 

Fig. 7. Image data augmentation.  
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resolve the issue of using a CNN in DL. When a model is extremely 
layered and deep, the information provided to the input layers may be 
lost before it reaches the output layer, and the model parameters may be 
highly susceptible to exploding or vanishing gradients. Note that the 
DenseNet architecture simplifies the connectivity proposed earlier by 
ResNet. DenseNet layers are narrow, implying a smaller number of pa
rameters to learn, thereby reducing the size of the model. The DenseNet 
architecture minimizes the learning of redundant feature maps [61]. 

In MobileNet, batch normalization is conducted in each convolution 
layer; accordingly, the number of feature maps is reduced. In addition, 
MobileNet reduces the size of the feature map by using a convolution 
layer instead of a pooling layer [62]. The performance of each pre
trained model with different model parameters are shown in Table 2. 
DenseNet concatenates the output feature map with the incoming 

feature map, while the others add them. ResNet features less inference 
time compared with the other models by keeping the parameter learning 
concise among the layers. 

3.4.2. DenseNet for steel frame damage identification 
A DCNN architecture with learnable parameters was implemented to 

build the model. Parameter weights from the pretrained CNN model of 
the proposed architecture trained using ImageNet data were considered 
as the input. The proposed DenseNet model for rebar damage identifi
cation, shown in Fig. 9, consisted of two major parts: a CNN layer stack 
arrangement and damage visualization. 

The computational operations of the CNN layer stack arrangement 
and Grad-CAM visualization method for damage classification are 
explained in the following sections. 

3.4.2.1. Steel frame damage classification. The CNN layer stack 
arrangement extracts features from the input image and generates 
feature vectors. The vectors are forwarded to an FCN for classification. 
The CNN layer arrangement and FCN are called the feature extractor and 
damage classifier, respectively. In the steel frame damage classification, 
the FCN is set to generate two softmax classes: damaged and undamaged 
steel rebars. For feature extraction, the input image is passed onto a 

Fig. 8. DenseNet layer stack.  

Table 2 
Proposed pretrained CNN model comparison.  

Model No. of parameters Convolution layers Inference time Size 

DenseNet 6 M+ 121 1.321 s 39 Mb 
MobileNet 4 M+ 88 1.381 s 16 Mb 
ResNet 25 M+ 50 2.243 s 98 Mb  

Fig. 9. Proposed DenseNet model.  

B. Kim et al.                                                                                                                                                                                                                                     



Automation in Construction 132 (2021) 103941

8

convolution layer of 32 filters with a 7 × 7 dimension, and a batch 
normalization function was applied along with the ReLU function. The 
features extracted from the input rebar images by the convolutional 
layer were used by the FCN for damage classification. The convolutional 
layers in the dense block had weights loaded from the pretrained model. 

Images from the steel frame dataset were segmented into mini- 
batches with a batch size of 32 images. These batches were fed 
through a data augmentation layer, which manipulated the input images 
using multiple parameters, as described in Section 3.3. The augmented 

images were used to train the model. During the training process, a 
batch of images was passed through a queue of the model. The model 
generated predictions after processing the images sequentially and 
individually. These predictions were compared with the original label, 
and the losses were calculated using the loss function and binary cate
gorical cross entropy; the losses were thereafter used to calculate the 
gradients for each layer of the model. The Adam optimization function 
was used to update the parameters of the model layers during back 
propagation [40]. The training process continued using all batches of the 
dataset, and the model was updated. The computational algorithm of 
DenseNet for feature extraction and feature classification is illustrated as 
a pseudocode in Table 3. 

The model was evaluated by calculating the validation loss obtained 
using the model predictions with the validation dataset. This training 
and validation constituted one epoch. The number of epochs was 
manipulated to ensure the prediction quality. The CNN model perfor
mances with different architectures were evaluated by manipulating the 
number of epochs. It was confirmed that no back propagation would 
occur while validating the model. Each model architecture demon
strated a distinctive mechanism wherein the convolutional networks 
extracted the features. 

3.4.2.2. Steel frame damage visualization. A novel Grad-CAM visualiza
tion method that identified the exact damage location on the surface of 
the steel frame was implemented and validated in this study. Training a 
CNN-based image classification model is challenging and can become 
counterintuitive if the training process is not done carefully. Deep CNN 
models have become more powerful in solving the complexities of image 
features. It is important to ensure that the developed model is capable of 
learning relevant features during training and its predictions are vali
dated. The efficiency of the DL model can be ensured by decoding the 
activated perceptron. Grad-CAM is one such method for visualizing 
activated perceptrons by generating a heatmap that provides insight into 
steel bar damage classification. The activated neurons of the Grad-CAM 
visualization provide insights into the damaged and undamaged loca
tions of the steel bars. Thus, this visualization technique was used to 
validate the efficiency of the model. The output from the final convo
lution and maxpool layers of the proposed DenseNet architecture 
generated a downscaled 7 × 7 feature map. The downscaled feature map 
from the DenseNet architecture was upscaled according to the original 
size of the input image. The internal operation and heat map visuali
zation for the damage identification are shown in Fig. 10. Once the 
feature map was upscaled, the Grad-CAM visualization superimposed an 
upscaled feature map over the original input image [64]. The super
imposing of images facilitated the identification of the damaged spot on 
the surface of the steel frame. 

Table 3 
DenseNet algorithm for steel frame damage classification.  

DenseNet algorithm 

Programming Language used for implementation: Python 
Libraries used for DenseNet model building: Tensorflow and Keras 
Libraries used for image augmentation: OpenCV and computer vision library. 
Libraries used for visualizations: Matplotlib and 2D graph tool  
1. Let X be the input image of batch, y be the label for the image X.  
2. PerformFeature Extraction on the image using DenseNet CNN Algorithm.  
a. Obtain feature maps of the 1st layer a0 after passing the image into convolution 

layer of 32 filters of dimension 7 × 7 and apply batch normalization function along 
with ReLU function.  

b. Apply Max Pooling function to a0.  
c. forr = 6, 12, 24 do  

i. Dense Block, repeat for r times  
1. Obtainxl− 1 output feature map from previous layer.  
2. Passxl− 1 to convolution layer of 128 filters of dimension 1 × 1 with batch 

normalization and ReLU activation and obtain yl.  
3. Passyl to convolution layer of 32 filters of dimension 3 × 3 with batch 

normalization and ReLU activation function to obtain yl.  
4. Concatenatexl− 1 and yl to get xl.  

ii. Transition Layer  
1. Obtain output of Dense Block xl− 1 and pass it to convolutional layer with 

filter of dimension 1 × 1, followed by batch normalization and ReLU 
activation function to obtain xl.  

2. Pass the xl to Global Average Pooling Algorithm and store it in xl. 
end for   

d. Dense Block, repeat 16 times  
i. Obtainxl− 1 output feature map from previous layer.  

ii. Passxl− 1 to convolution layer of 128 filters of dimension 1 × 1 with batch 
normalization and ReLU activation and obtain yl.  

iii. Passyl to convolution layer of 32 filters of dimension 3 × 3 with batch 
normalization and ReLU activation function to obtain yl.  

iv. Concatenatexl− 1 and yl to obtain xl feature map.  
e. Flatten the xl feature map to get feature vectors.   

3. Run Feature Classification Network on the feature vector.  
a. Initialize weights w and bias b arrays of Linear Network with 256 Neural 

Nodes.  
b. Performz = w. afeature + b.  
c. Perform ReLU Activation Function al = max (z,0).  
d. Initialize weights w and bias b arrays of Linear Network with two Neural 

Nodes.  
e. Performz = w. al + b.  
f. Perform ReLU Activation Function al = max (z,0).  
g. Apply softmax function on al to obtain probability distribution of the two 

classes: damaged and undamaged rebar.  

Fig. 10. Grad-CAM visualization for steel frame damage identification.  
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4. Results and discussions 

4.1. Steel frame classification using different pretrained models 

The model classifiers were trained using batches of 32 images for 
each iteration of 30 epochs. The classification accuracies of the models 
were evaluated using a confusion matrix that provided a correlation 

Fig. 11. Learning curve of models during training and validation phase: (a) 
DenseNet; (b) MobileNet; (c) ResNet. 

Fig. 12. Confusion matrix for damage classification: (a) DenseNet; (b) Mobi
leNet; (c) ResNet. 
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between the prediction of the model and the actual class label of the data 
points. The learning curves of the DL models during the training and 
testing phases are shown in Fig. 11(a), (b), and (c). During model 
training, the ResNet50, MobileNet, and DenseNet-121 classifiers ach
ieved maximum classification accuracies of 94.5%, 93.9%, and 99.3%, 
respectively. DenseNet-121 outperformed the other models in terms of 
classification accuracy during the testing phase. 

The DenseNet-121 classifier achieved almost perfect classification 
scores with only seven false positives (FPs) and one false negative (FN), 
whereas MobileNet obtained 10 FPs and 70 FNs for 144 test images of 
the test set, as shown in the confusion matrix in Fig. 12(a) and (b). The 
ResNet classifier achieved the lowest accuracy as compared with the 
other classifiers. It produced 17 FPs and 72 FNs as shown in the 
confusion matrix in Fig. 12(c). 

The performances of the models were assessed using additional 
metrics (i.e., balanced accuracy, and Cohen’s Kappa and ROCAUC 
scores). The balanced accuracy metric evaluates the performance of a 
model using imbalanced datasets and classifies the balance accuracy in 
binary using Eq. 1. 

balanced accuracy =
1
2
×

(
TP

TP + FN
+

TN
TN + FP

)

, (1)  

where TP is the total number of positives, FN is the number of false 
negatives, TN is the total number of negatives, and FP is the number of 
false positives. 

A model with a balanced accuracy score greater than 0.5 is consid
ered to outperform the others. The Cohen’s Kappa score k, which is a 
metric that compares observed and expected accuracies, was calculated 
using Eqs. 2, 3, and 4. 

k =
po − pe

1 − pe
, (2)  

where po is the relative observed accuracy among classifiers, and pe is 
the hypothetical probability of chance agreement. 

p0 =
TP + TN

TP + TN + FP + FN
(3)  

pe =
(TN + FP)*(TN + FN) + (FN + TP)*(FP + TP)
(TP + TN + FP + FN)*(TP + TN + FP + FN)

(4) 

The Cohen’s Kappa score was always less than or equal to 1. The 
greater the Cohen’s Kappa score, the greater the accuracy of the model. 
The Cohen’s Kappa score of DenseNet (97.7%) was greater than that of 
MobileNet (95.6%) and ResNet (89.4%), as shown in Table 4. 

The AUROC curve represents the performance of the classification 
models, given various thresholds. The ROC is a probability curve plot
ting the true positive rate over the false positive rate. The AUC is the 

Table 4 
Score metric of the models.  

Model Balanced accuracy Cohen’s Kappa score AUROC score 

DenseNet 94.8% 97.8% 99.1% 
MobileNet 92.2% 95.6% 97.9% 
ResNet 90.4% 89.4% 93.8%  

Fig. 13. AUROC of models for steel bar damage classification: (a) DenseNet; (b) MobileNet; (c) ResNet; (d) AUC comparison of the models.  
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degree of separability that ranges from 1 to 0. The closer the AUC value 
of the model is to 1, the more suitable the model is for classification. The 
AUC scores of DenseNet-121, MobileNet, and ResNet were 99.1%, 
97.9%, and 93.8%, respectively, as shown in Fig. 13(a), (b), and (c). 
Indeed, DenseNet-121 outperforms the other classifiers, based on the 
AUC score. 

The AUROC score was considered for measuring model performance 
in terms of accuracy over both the classes equally. The higher proba
bility value of DenseNet indicates that the model was able to classify the 
damaged and undamaged steel frames perfectly. In deep connected 
networks, the flow of gradients from one layer to another is essential to 
enhance model performance. Densely connected layers in the DenseNet 
improves the flow of information and gradients throughout the network 
and enables access to the gradients at each layer of the DenseNet. By 
using this information, the DenseNet model may reduce overfitting and 
maintain the maximum AUROC score. 

A comparison of the evaluation metric values for the classification 
model performances is shown in Fig. 14. The results confirmed that the 
DenseNet model outperformed the MobileNet and ResNet models in 
terms of identifying steel frame damage. The outstanding metric scores 
of balanced accuracies, and Cohen’s Kappa and AUROC scores, which 
were 94.8%, 97.8%, and 99.1%, respectively, provide evidence that 
DenseNet was the best model, followed by MobileNet. Indeed, the fully 
connected convolution layers that received all the preceding layers as 
input and featured a strong gradient flow enabled DenseNet to outper
form the other classifiers. 

The Grad-CAM visualization outputs obtained by using the DenseNet 
model are presented in Fig. 15. The steel frame image that was input to 
the DenseNet model generated a downscaled 7 × 7 feature set. To obtain 
the Grad-CAM visualization, the lower-end feature set was upscaled to 
the pixel size of the original input image. The upscaled feature set was 
superimposed on the input image to locate the damaged spot on the 
surface of the steel frame. It was found that the damaged steel frame 
images were clearly identified by overlaying the damage on the original 
image, and the superimposed image did not vary considerably with the 
original image when the undamaged steel frame was under study as 
shown in Fig. 15. 

5. Conclusion 

The main contribution of this study is the development of a DCNN- 
based architecture that classifies steel frames into damaged and 

undamaged by identifying the damaged location on the surface of the 
steel frame. Given that the dataset used to train the models in this study 
was limited, the research findings provide evidence that the DCNN 
model achieves the purpose of this study with minimum trade-offs and 
number of parameters. The densely connected CNN layers in the Den
seNet architecture, which were used to implement this study, mitigated 
the vanishing gradient problem and contributed to achieving superior 
classification performance despite being trained with fewer parameters. 
The robustness of the DenseNet architecture was further augmented by 
integrating the Grad-CAM visualization technique, thereby making the 
damage classification model more efficient. The integration realized 
object localization by transferring the knowledge acquired by the model 
to detect damaged steel frame images. The image augmentation tech
niques that were implemented to include more adversaries among the 
training images ensured enhanced model learning. The novel technique 
implemented in the proposed model may detect damage through 
knowledge transfer and an intuitive understanding of the CNN model. 
The validity of the DenseNet model was confirmed by a maximum ac
curacy of 99.3% obtained through a minimum computation of 30 
epochs. The DenseNet model outperformed the other pretrained DL 
models (MobileNet and ResNet). 

This study featured a unique stack arrangement of the DenseNet 
layer that densely connected all the layers to reduce the problem asso
ciated with redundant layers, thereby improving the overall accuracy 
compared with other DCNN models. This method advances the ongoing 
research on damage identification and location methods and the body of 
knowledge in construction management at a job site because it helps 
project managers achieve the goals involved in quality control. A limi
tation of this study was the degree of computerization. Because the 
method was not completely computerized, it may not control the dam
age to steel frames by detecting them and providing their locations 
without the involvement of managers in real time. It would be possible 
to further optimize the hyperparameters of the proposed architecture by 
compressing the size of the model to develop a fully functional auton
omous system. The efficiency of DenseNet runtime may be enhanced 
using model optimization techniques, which may facilitate the integra
tion of the model into an embedded device. Furthermore, the integration 
of steel frame damage classification models with autonomous UAVs 
and/or ground vehicles is intended for a future study. 

Fig. 14. Performance comparison of classification models.  
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